

An Exploration of Fact Fluency in 150,000 Elementary Students

Kathryn Rich & Meg Bates

**MICHIGAN STATE
UNIVERSITY**

Agenda

- Background on fact fluency
- Design of current study
- Results
- Discussion

Definitions

- Basic facts: Single-digit addition and subtraction problems
- *Fluency: accuracy with speed*
(Van der Ven, Segers, Takashima, & Verhoeven, 2017)
- Benefits:
 - Freed working memory
 - Predicts later achievement in mathematics

(Baroody, Eiland, Purpura, & Reid, 2013; Codding & Martin, 2016; Geary, 2010; Geary et al., 2009; Gersten et al., 2009)

Developing Fluency

Accuracy
& Speed

Counting

Other
meaningful
strategy use

Recall

(Baroody, Bajwa, & Eiland, 2009; Gersten et al., 2009;
National Research Council, 2001)

Meaningful strategies

- Deriving unknown facts from known “helper” facts

$$6 + 6 = 12 \quad \longrightarrow \quad 6 + 7 = (6 + 6) + 1 \\ = 12 + 1 = 13$$

- Using properties

$$4 + 3 = 7 \quad \longrightarrow \quad 3 + 4 = 7$$

$$7 + 8 = 15 \quad \longrightarrow \quad 15 - 8 = 7$$

Current study: The *Facts Workshop Game*

- Played by thousands of students
- Performance on doubles and 0s/1s tracked separately
- 10-question rounds of play:

Facts Workshop Game

- Fact-family approach

Use the keypad to enter the missing number for this diagram.

Total
□
Part 5 Part 4

7 8 9
4 5 6
1 2 3
0
ok clear

Click on the fact family that matches this domino.

0 + 8 = 8
8 + 0 = 8
8 - 0 = 8
8 - 8 = 0

1 + 6 = 7
6 + 1 = 7
7 - 1 = 6
7 - 6 = 1

1 + 8 = 9
8 + 1 = 9
9 - 1 = 8
9 - 8 = 1

- For this study, we looked only at basic facts in untimed mode.

Research Questions

1. What are students' fluency levels with different groups of basic addition and subtraction facts?
2. In what order and combinations do students appear to become fluent with different fact groups?
3. Which fact groups, once mastered, appear to support fluency with other fact groups?

Sample

- All students who completed at least one complete round of 10 questions
 - $N = 155,628$
- Most completed very few rounds
- Students were in G2, G3, G4

Measure

- For each question, game records:
 - Correct or incorrect (accuracy)
 - Milliseconds to respond (speed)
- Our measure of fluency (accuracy + speed):
 - Average time to respond *correctly*
- Aggregated by student and by fact group
- Discarded data from first question in round

Analysis Plan

- Fluency codes:

Fluent

6 sec or less

Medium

6+ to 15 sec

Slow

15+ sec

(Purpura, Baroody, Eiland, & Reid, 2016)

- **RQ1:** No. of students Fluent on each fact group.
- **RQ2:** No. of students with each combination of Fluent fact groups.
- **RQ3:** Relationships between Fluency on 0s/1s and doubles and Fluency on mixed facts

Results: Question 1

Percent of students with each fluency code

Fluency Code	0s/1s	Doubles	Mixed
Fluent	25.12	32.05	12.13
Medium	56.87	54.97	69.09
Slow	18.02	12.99	18.79

Results: Question 2

Students Fluent on each combination of fact groups

Fluent Fact Groups	% Students
None	55.41
Doubles	14.10
0s/1s	9.44
0s/1s, Doubles	8.92

32%

Fluent Fact Groups	% Students
All	5.45
Doubles, Mixed	3.57
Mixed	1.80
0s/1s, Mixed	1.31

7%

Results: Question 3

Fluent Helper Fact Groups	Mean Speed on Mixed Facts (s)
Both	8.02
Doubles	9.54
0s/1s	13.93
Neither	19.71

$p < 0.001$ in all comparisons

Large effects

Medium effects

Small effects

Discussion

- General support for theory of “helper facts”:
 - 0s/1s and doubles seem to be acquired first and more easily.
 - Fluency on each helper fact group is associated with faster speed on mixed facts.

Future Directions

- Exploring the role of other variables in the game (style of question presentation, time limits).
- Other studies of other helper-fact groups. In particular, combinations of 10.

Thank you! Questions?

- Katie Rich

 @KatietheCurious

 richkat3@msu.edu

- Meg Bates

 megbates@uchicago.edu

References

- Baroody, A., Bajwa, N. P., & Eiland, M. (2009). Why can't Johnny remember the basic facts? *Developmental Disabilities Research Reviews*, 15, 69-79.
- Baroody, A. J., Eiland, M. D., Purpura, D. J., & Reid, E. E. (2013). Can computer-assisted discovery learning foster first graders' fluency with the most basic addition combinations? *American Educational Research Journal*, 50(3), 533-573.
- Coddington, R. S., & Martin, R. (2016). Tier 3: Intensive mathematics intervention strategies. In S. R. Jimerson, M. K. Burns, & A. M. VanDerHeyden (Eds.), *Handbook of Response to Intervention* (2nd ed.), pp. 375-388. New York: Springer.
- Geary, D. C. (2010). Mathematical disabilities: Reflections on cognitive, neuropsychological, and genetic components. *Learning and Individual Differences*, 20, 130-133.
- Geary, D. C., Bailey, D. H., Littlefield, A., Wood, P., Hoard, M. K., & Nugent, L. (2009). First-grade predictors of mathematical learning disability: A latent class trajectory analysis. *Cognitive Development*, 24(4), 411-429.
- Gersten, R., Beckmann, S., Clarke, B., Foegen, A., Marsh, L., Star, J. R., & Witzel, B. (2009). *Assisting students struggling with mathematics: Response to Intervention (RtI) for elementary and middle schools* (NCEE 2009-4060). Washington, DC: National Center for Education Evaluation and Regional Assistance, Institute of Education Sciences, U.S. Department of Education. Retrieved from <http://ies.ed.gov/ncee/wwc/publications/practiceguides/>.
- National Research Council. (2001). *Adding it up: Helping children learn mathematics*. J. Kilpatrick, J. Swafford, and B. Findell, Eds. Mathematics Learning Study Committee, Center for Education, Division of Behavioral and Social Sciences and Education. Washington, DC: National Academy Press.
- Purpura, D. J., Baroody, A. J., Eiland, M. D., & Reid, E. E. (2016). Fostering first graders' reasoning strategies with basic sums: The value of guided instruction. *The Elementary School Journal*, 117(1), 72-100.
- Van der Ven, F., Segers, E., Takashima, A., & Verhoeven, L. (2017). Effects of a tablet game intervention on simple addition and subtraction fluency in first graders. *Computers in Human Behavior*, 72, 200-207.