Papert v. Shulman

As I mentioned in last week’s post, I recently read a seminal work I’ve been meaning to read for years: Mindstorms by Seymour Papert. I have read bits and pieces of it in the past, but reading it start-to-finish was absolutely worth the time it took. Papert (1980) describes his vision for learning and for school eloquently and using many viewpoints and examples. I really got a feel for Papert’s philosophy by spending a couple days reading this book.

One of the things that struck me the most was Papert’s characterization of typical school mathematics and physics as perpetual learning of prerequisites:

Most physics curricula are similar to the math curriculum in that they force the learner into dissociated learning patterns and defer the “interesting” material past the point where most students can remain motivated enough to learn it. The powerful ideas and intellectual aesthetic of physics is lost in the perpetual learning of “prerequisites.” (Papert, 1980, pp. 122-123)

He goes on to argue, in some detail, that the material we teach in schools, largely laden propositional knowledge and equations, is not really prerequisite to understanding the powerful ideas of the disciplines. Indeed, the more qualitative, less precisely described ideas were developed first historically. Presenting a hypothetical dialogue between Aristotle and Galileo, Papert (1980) argues that these great thinkers worked by manipulating intuitions, not equations. Why shouldn’t students be asked to do the same? Papert does not believe there is any reason why children should not be asked to think like physicists and mathematicians.

His ideas are compelling, and as per usual, this fact has  made them controversial. I have read a number of arguments against Papert’s model of learning. Most were not worth reporting, but one got me started on an interesting thought experiment. In a lengthy argument against all forms of “minimal guidance” learning (Papert’s constructionism included), Kirschner, Sweller, and Clark (2006) argued,

Another consequence of attempts to implement constructivist theory is a shift of emphasis away from teaching a discipline as a body of knowledge toward an exclusive emphasis on learning a discipline by experiencing the processes and procedures of the discipline …  Yet it maybe a fundamental error to assume that the pedagogic content of the learning experience is identical to the methods and processes (i.e., the epistemology) of the discipline being studied and a mistake to assume that instruction should exclusively focus on methods and processes. (p. 78)

In support of this argument, Kirschner, Sweller, and Clark (2006) point to Shulman’s (1986) oft researched, oft cited construct of pedagogical content knowledge (PCK). Shulman separated content knowledge, or knowledge of a discipline, from pedagogical content knowledge, or knowledge of how to teach a discipline. Kirsch, Sweller, and Clark argued that to treat learning of a discipline as the same as practicing a discipline was to ignore the existence and importance of pedagogical content knowledge.

Overall, the argument did not hold a lot of water for me. Now that I have read Mindstorms in its entirety, it’s clear to me that Papert’s ideas have been wildly oversimplified and mischaracterized as they were discussed and debated. Papert does not argue that children should learn physics by attempting to engage in problems exactly as a physicist does. Rather, he advocates that under the right conditions, children naturally think the way physicists think, and shouldn’t be precluded from doing so.

So, the argument is moot. But still, I found it very interesting to ponder the following question: Would use of a “pure discovery” or fully “unguided learning” approach in a classroom necessarily mean there is no place for pedagogical content knowledge? By presenting students with a task and leaving them be, are educators who use such approaches failing to apply any PCK?

After a bit of pondering, I decided the answer was no for this reason: Educators who use such approaches still have to choose a task. Task development and selection is a huge part of pedagogy. Is asking students to solve a decontextualized fraction problem the same as asking them to reason about how to share a snack fairly among their friends? Is asking them to summarize a novel the same as asking them to write a letter from the perspective of one of the characters? Definitely not.

Papert’s constructionism is more than just setting a task. But even so, it’s also true that pedagogical content knowledge is more than guidance in completing a task. It’s also about choosing a task to be completed.

I guess the cage match between Papert and Shulman is draw.


Kirschner, P. A., Sweller, J., & Clark, R. E. (2006). Why minimal guidance during instruction does not work. Educational Psychologist, 41(2), 75–86.

Papert, S. (1980). Mindstorms: Children, computers, and powerful ideas. Basic Books, Inc..

Shulman, L. S. (1986). Those who understand: Knowledge growth in teaching. Educational researcher, 15(2), 4-14.


2 thoughts on “Papert v. Shulman

  1. I wouldn’t take the anti-discovery learning crew’s word about discovery eliminating the need for pedagogical content knowledge. More generally, I think that crew sets up a straw man — unfettered discovery, with no didacticism — a position no one actually advocates. I’d guess that Papert and Shulman are not opposed at all — Papert, for example, was a research mathematician who knew a lot about teaching,

    Great post, as usual, Katie. A pleasure to read on a snowy Friday night.

    Liked by 1 person

Leave a Reply

Fill in your details below or click an icon to log in: Logo

You are commenting using your account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s